37 |
D. Reker, Y. Rybakova, A. R. Kirtane, R. Cao, J. W. Yang, N. Navamajiti, A. Gardner, R. M. Zhang, T. Esfendiary, J. L'Heureux, T. von Erlach, E. M. Smekalova, D. Leboeuf, K. Hess, A. Lopez, J. Rogner, J. Collins, S. Tamang, K. Ishida, P. Chamberlain, D. S. Yun, A. Lytoon-Jean, C. K. Soule, J. H. Cheah, A. M. Hawayrd, R. Langer, G. Traverso†. Computationally guided high-throughput design of self-assembling drug nanoparticles. (2020), preprint available at bioRxiv, doi.org/10.1101/786251, in revision.
|
36 |
D. Reker†. Active learning for drug discovery and automated data curation. (2020) Artificial Intelligence in Drug Discovery (Royal Chemical Society), in press.
|
35 |
D. Reker†. Practical Considerations for Active Machine Learning in Drug Discovery. (2020) Drug Discov Today Tech., https://doi.org/10.1016/j.ddtec.2020.06.001
|
34 |
N. Brown*, P. Ertl*, R. A. Lewis*,†, T. Luksch*,†, D. Reker*,†, N. Schneider*.Editorial - Artificial intelligence in chemistry and drug design. (2020) JCAMD, https://doi.org/10.1007/s10822-020-00317-x
|
33 |
T. v. Erlach, S. Saxton, Y. Shi, D. Minahan, D. Reker, F. Javid, Y.-A. L. Lee, C. Schoellhammer, T. Esfandiary, C. Cleveland, L. Booth, J. Lin, H. Levy, S. Blackburn, A. Hayward, R. Langer†, G. Traverso†. Whole tissue robotic interface system for oral drug formulation development. (2020) Nat. Biomed. Eng, 4, 544–59.
|
32 |
D. Reker, Y. Shi, A. R. Kirtane, K. Hess, G. J. Zhong, E. Crane, C.-H. Lin, R. Langer, G. Traverso†. Machine learning uncovers food- and excipient-drug interactions. (2020) Cell Rep., 30(11), 3710-16.e4.
|
31 |
D. Reker†, R. A. Lewis.Advanced Editorial to announce a JCAMD Special Issue on Artificial Intelligence and Machine Learning. (2019) JCAMD, 33(11), 941.
|
30 |
D. Reker†. Chemoinformatic analysis of natural product fragments. (2019) Chemoinformatics in Natural Product Research, Progress in the Chemistry of Organic Natural Products 110 (Springer Nature), 143-75.
|
29 |
L. Li, C. C. Koh, D. Reker,J.B. Brown, H. Wang, N. K. Lee, H.-H. Liow, H. Dai, H.-M. Fan, L. Chen, D-Q. Wei†. Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees. (2019) Sci. Rep. 9, 7703.
|
28 |
D. Reker*, S. M. Blum*, C. Steiger, K. E. Anger, J. M. Sommer, J. Fanikos, G. Traverso†. "Inactive" ingredients in oral medications. (2019) Sci. Trans. Med. 11(483), eaau6753. (Highlighted in MIT News March 13 2019 and by NPR, Yahoo, Fortune, CNBC)
|
27 |
D. Reker†,G.J. L. Bernardes, T. Rodrigues†. Computational advances in combating colloidal aggregation in drug discovery. (2019) Nat. Chem., 11, 402–18.
|
26 |
D. Reker,G.J. L. Bernardes†, T. Rodrigues†. Evolving and Nano Data Enabled Machine Intelligence for Chemical Reaction Optimization. (2018), in review, preprint available atChemRxiv.
|
25 |
D. Reker†, J. B. Brown. Selection of informative examples in chemogenomic datasets. (2018) Methods Mol. Bio., 1825, 369-410.
|
24 |
C. Rakers, D. Reker, J. B. Brown†. Small random forest models for effective chemogenomic active learning. (2017) J. Comput. Aided Chem., 18, 124-42.
|
23 |
D. Reker, P. Schneider, G. Schneider, J. B. Brown†. Active learning for computational chemogenomics. (2017) Fut. Med. Chem, 9 (4), 381-402.
|
22 |
J. Cui, M. Hollmén, L. Li, Y. Chen, S. T. Proulx, D. Reker, G. Schneider, M. Detmar†. New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate. (2017) Oncotarget, 8 (1), 1007-22.
|
21 |
G. Schneider†, D. Reker, T. Chen, K. Hauenstein, P. Schneider, K.-H. Altmann. Deorphaning the macromolecular targets of the natural anticancer compound doliculide. (2016) Angew. Chem. Int. Ed., 55 (40), 12408-11.
|
20 |
F. Grisoni*, D. Reker*, P. Schneider, L. Friedrich, V. Consonni, R. Todeschini, A. Koeberle, O. Werz, G. Schneider†. Matrix‐based molecular descriptors for prospective virtual compound screening. (2016) Mol. Inf., 36 (1-2).
|
19 |
D. Reker, P. Schneider, G. Schneider†. Multi-objective active machine learning rapidly improves structure-activity models and reveals new protein-protein interaction inhibitors. (2016) Chem. Sci., 7, 3919-27.
|
18 |
T. Rodrigues*, D. Reker*, P. Schneider*, G. Schneider*,†. Counting on natural products for drug design. (2016) Nat. Chem., 8, 531-41.
|
17 |
P. Schneider, M. Röthlisberger, D. Reker, G. Schneider. Spotting and designing promiscuous ligands for drug discovery. (2016) Chem. Commun., 52, 1135-8.
|
16 |
T. Rodrigues*, D. Reker*, M. Welin, M. Caldera, C. Brunner, G. Gabernet, P. Schneider, B. Walse, G. Schneider†. De novo fragment design for drug discovery and chemical biology. (2015) Angew. Chem. Int. Ed., 54 (50), 15079-83. (selected by editor as “very important paper (VIP)”)
|
15 |
T. Rodrigues, D. Reker, J. Kunze, P. Schneider, G. Schneider†. Revealing the macromolecular targets of fragment-like natural products. (2015) Angew. Chem. Int. Ed., 54 (36), 10516-20.
|
14 |
A. M. Perna*, T. Rodrigues*, T. P. Schmidt, M. Böhm, K. Stutz, D. Reker, B. Pfeiffer, K.-H. Altmann, S. Backert, S. Wessler, G. Schneider†. Fragment-based de novo design reveals a small molecule inhibitor of Helicobacter pylori HtrA. (2015) Angew. Chem. Int. Ed., 54 (35), 10244-8. (selected by editor as "hot paper")
|
13 |
T. Miyao*, D. Reker*, P. Schneider, K. Funatsu, G. Schneider†. Chemography of natural product space. (2015) Planta Med., 81 (6), 429-35.
|
12 |
D. Reker, G. Schneider. Active-learning strategies in computer-assisted drug discovery. (2015) Drug Discov. Today, 20 (4), 458-65.
|
11 |
T. Rodrigues*, N. Hauser*, D. Reker, M. Reutlinger, T. Wunderlin, J. Hamon, G. Koch, G. Schneider†. Multidimensional de novo design reveals 5-HT2B receptor-selective ligands. (2015) Angew. Chem. Int. Ed., 54 (5), 1551-5.
|
10 |
D. Reker, A. M. Perna, T. Rodrigues, P. Schneider, M. Reutlinger, B. Mönch, A. Koeberle, C. Lamers, M. Gabler, H. Steinmetz, R. Müller, M. Schubert-Zsilavecz, O. Werz, G. Schneider†. Revealing the macromolecular targets of complex natural products. (2014) Nat. Chem., 6 (12), 1072-8. (Highlighted in ETH Life November 12 2014 and CHIMIA 2015, 69, No. 3, p153. Recommended article by the F1000 Faculty Review)
|
09 |
G. Schneider†, D. Reker, T. Rodrigues, P. Schneider. Coping with polypharmacology by computational medicinal chemistry. (2014) CHIMIA, 68 (9), 648-53.
|
08 |
D. Reker*, M. Seet*, M. Pillong, C. P. Koch, P. Schneider, M. C. Witschel, M. Rottmann, C. Freymond, R. Brun, B. Schweizer, B. Illarionov, A. Bacher, M. Fischer, F. Diederich, G. Schneider†. Deorphaning pyrrolopyrazines as potent multi‐target antimalarial agents. (2014) Angew. Chem. Int. Ed., 53 (27), 7079-84.
|
07 |
D. Reker, T. Rodrigues, P. Schneider, G. Schneider†. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. (2014) Proc. Natl. Acad. Sci. USA, 111 (11), 4067-72. (Highlighted in ETH Life March 17 2014)
|
06 |
J. Lötsch, G. Schneider, D. Reker, M. J. Parnham, P. Schneider, G. Geisslinger, A. Doehring†. Common non-epigenetic drugs as epigenetic modulators. (2013) Trends Mol. Med., 19 (12), 742-53.
|
05 |
T. Rodrigues, F. Roudnicky, C.P. Koch, T. Kudoh, D. Reker, M. Detmar, and G. Schneider†. De novo design and optimization of Aurora A kinase inhibitors. (2013) Chem. Sci., 4 (3), 1229-33.
|
04 |
M. Reutlinger*, C.P. Koch*, D. Reker*, N. Todoroff, P. Schneider, T. Rodrigues, and G. Schneider†. Chemically advanced template search (CATS) for scaffold-hopping and prospective target prediction for 'orphan' molecules. (2013) Mol. Inf., 32 (2), 133-8.
|
03 |
D. Reker, L. Malmström†. Bioinformatic challenges in targeted proteomics. (2012) J. Proteome Res., 11 (9), 4393-402.
|
02 |
C. Fritz, C. Kirschner, D. Reker, A. Wisplinghoff, H. Paulheim, and F. Probst†. Geospatial web mining for emergency management. (2010) GIScience 2010 - Extended Abstracts.
|
01 |
D. Reker, S. Katzenbeisser, K. Hamacher†. Computation of mutual information from Hidden Markov Models. (2010) Comput. Biol. Chem., 34 (5), 328-33.
|